Science

 Quarter 1 - Module 7: Basic Electricity

Science - Grade 8
 Alternative Delivery Mode
 Quarter 1 - Module 7: Basic Electricity
 First Edition, 2020

Republic Act 8293, section 176 states that: No copyright shall subsist in any work of the Government of the Philippines. However, prior approval of the government agency or office wherein the work is created shall be necessary for the exploitation of such work for a profit. Such agency or office may, among other things, impose as a condition the payment of royalties.

Borrowed materials (i.e., songs, stories, poems, pictures, photos, brand names, trademarks, etc.) included in this book are owned by their respective copyright holders. Every effort has been exerted to locate and seek permission to use these materials from their respective copyright owners. The publisher and authors do not represent nor claim ownership over them.

Published by the Department of Education
Secretary: Leonor Magtolis Briones
Undersecretary: Diosdado M. San Antonio

\quad Development Team of the Module	
Writer: Rey R. Angel	
Editor: Daisy Ruby Sinday	
Reviewers: \quad Bernabe L. Linog, Relyn D. Raza, Jonas F. Saldia, Delia C. Pioco	
Illustrators: \quad Rosa Mia L. Pontillo	
Layout Evaluators:	Celeste Faith R. Almanon, Jay S. Ayap
Management Team:	Francis Cesar B. Bringas Isidro M. Biol, Jr. Maripaz F. Magno Josephine Chonie M. Obseñares Gregoria T. Su Marvilyn C. Francia Jay S. Ayap Nonita C. Patalinghug

Printed in the Philippines by

Department of Education - Caraga Region

Office Address: Teacher Development Center J.P. Rosales Avenue, Butuan City, Philippines 8600

Telefax: (085) 342-8207/(085) 342-5969
E-mail Address: caraga@deped.gov.ph

8

Science
 Quarter 1 - Module 7: Basic Electricity

Introductory Message

For the facilitator:
Welcome to the Science 8 Alternative Delivery Mode (ADM) Module on Basic Electricity!

This module was collaboratively designed, developed, and reviewed by educators both from public and private institutions to assist you, the teacher, or facilitator in helping the learners meet the standards set by the K to 12 Curriculum while overcoming their personal, social, and economic constraints in schooling.

This learning resource hopes to engage the learners in guided and independent learning activities at their own pace and time. Furthermore, this also aims to help learners acquire the needed 21 st-century skills while taking into consideration their needs and circumstances.

In addition to the material in the main text, you will also see this box in the body of the module:

Notes to the Teacher

This contains helpful tips or strategies that will help you in guiding the learners.

As a facilitator, you are expected to orient the learners on how to use this module. You also need to keep track of the learners' progress while allowing them to manage their learning. Furthermore, you are expected to encourage and assist the learners as they do the tasks included in the module.

For the learner:
Welcome to the Science 8 Alternative Delivery Mode (ADM) Module on Basic Electricity!

The hand is one of the most symbolized parts of the human body. It is often used to depict skill, action, and purpose. Through our hands, we may learn, create, and accomplish. Hence, the hand in this learning resource signifies that you as a learner is capable and empowered to successfully achieve the relevant competencies and skills at your own pace and time. Your academic success lies in your own hands!

This module was designed to provide you with fun and meaningful opportunities for guided and independent learning at your own pace and time. You will be enabled to process the contents of the learning resource while being an active learner.

This module has the following parts and corresponding icons:

What I Need to Know

What I Know

What's In

What's New

What is It

What's More

What I Have
Learned

This will give you an idea of the skills or competencies you are expected to learn in the module.

This part includes an activity that aims to check what you already know about the lesson to take. If you get all the answers correct (100%), you may decide to skip this module.

This is a brief drill or review to help you link the current lesson with the previous one.

In this portion, the new lesson will be introduced to you in various ways such as a story, a song, a poem, a problem opener, an activity, or a situation.

This section provides a brief discussion of the lesson. This aims to help you discover and understand new concepts and skills.

This comprises activities for independent practice to solidify your understanding and skills of the topic. You may check the answers to the exercises using the Answer Key at the end of the module.

This includes questions or blank sentences/paragraphs to be filled into the process what you learned from the lesson.

What I Can Do

Assessment

Additional Activities

Answer Key

This section provides an activity that will help you transfer your new knowledge or skill in real-life situations or concerns.

This is a task which aims to evaluate your level of mastery in achieving the learning competency.

In this portion, another activity will be given to you to enrich your knowledge or skill of the lesson learned. This also tends the retention of learned concepts.

This contains answers to all activities in the module.

At the end of this module you will also find:

References

This is a list of all sources used in developing this module.

The following are some reminders in using this module:

1. Use the module with care. Do not put unnecessary mark/s on any part of the module. Use a separate sheet of paper in answering the exercises.
2. Don't forget to answer What I Know before moving on to the other activities included in the module.
3. Read the instruction carefully before doing each task.
4. Observe honesty and integrity in doing the tasks and checking your answers.
5. Finish the task at hand before proceeding to the next.
6. Return this module to your teacher/facilitator once you are through with it.

If you encounter any difficulty in answering the tasks in this module, do not hesitate to consult your teacher or facilitator. Always bear in mind that you are not alone.

We hope that through this material, you will experience meaningful learning and gain a deep understanding of the relevant competencies. You can do it!

What I Need to Know

This module was designed and written with you in mind. It is here to help you master basic electricity. The scope of this module permits it to be used in many different learning situations. The language used recognizes the diverse vocabulary level of students. The lessons are arranged to follow the standard sequence of the course. But the order in which you read them can be changed to correspond with the textbook you are now using.

This module contains:

- Lesson 1 - Ohm's Law

After going through this module, you are expected to:

1. Infer the relationship between current and voltage (MELC Week 5-6)

What I Know

Choose the letter of the correct answer. Write your answers on a separate sheet of paper.

1. It is a difference in electric potential energy in joule/coulomb.
A. circuit
B. current
C. resistance
D. voltage
2. What is the SI unit of voltage?
A. ampere
B. ohm
C. volt
D. watt
3. It is the number of charges passing through a wire per unit time.
A. current
B. power
C. resistance
D. voltage
4. What is the SI unit of current?
A. ampere
B. ohm
C. volt
D. watt
5. It is the opposition to the flow of electric charges as they travel through a conducting wire.
A. circuit
B. current
C. resistance
D. voltage
6. What is the SI unit of resistance?
A. ampere
B. ohm
C. volt
D. watt
7. Which of the following is the correct statement of Ohm's Law?
A. When current increases in a circuit, voltage increases and resistance increases.
B. When current increases in a circuit, voltage decreases and resistance increases.
C. When current increases in a circuit, voltage increases while resistance remains constant.
D. When current decreases in a circuit, voltage decreases and resistance increases.
8. It supplies energy in an electric circuit.
A. load
B. switch
C. voltage source
D. conducting wire
9. It converts electrical energy into different forms of energy such as light, heat, or sound in an electric circuit.
A. load
B. switch
C. voltage source
D. conducting wire
10. According to Ohm's law, across a resistor with constant resistance, what happens to the current across it when the voltage applied is halved?
A. halved
B. doubled
C. quadrupled
D. remains the same
11. Consider a simple electric circuit with a voltage source of 20.0 V which has a current of 0.500 A . What is the resistance of the load?
A. 20.0 ohms
B. 30.0 ohms
C. 40.0 ohms
D. 50.0 ohms
12. A laptop power charger has an output of 5.00 volts and has a resistance of 800 ohms. What is the current output of the charger?
A. 6.25 mA
B. 50.0 mA
C. 75.0 mA
D. 80.0 mA
13. A LED TV power adaptor has a $2-\mathrm{mA}$ output and resistance of 900 ohms. What is the voltage output of the adaptor?
A. 2 volts
B. 4 volts
C. 6 volts
D. 8 volts
14. A motorcycle starter motor needs 40.0 A to operate with a resistance of 0.150 ohms. What is the needed voltage to start the motor?
A. 5.00 V
B. 6.00 V
C. 7.00 V
D. 8.00 V
15. A water heater has a resistance of 22Ω connected to a $220-\mathrm{V}$ voltage source. What is the needed current to operate the heater?
A. 5 A
B. 7 A
C. 8 A
D. 10 A

Ohm's Law

Recall that when you study heat and temperature, you learned that heat energy flows from a body of higher temperature to a lower temperature. The flow ceases when both bodies reach the same temperature. Similarly, when an electrical conductor is connected to different electric potentials, charge flows from one end to the other end of the conductor. Without potential difference, no charge flows as well.

What's In

To attain a sustained flow of charge in a conductor, an electrical set up must maintain a difference in potential while charge flows from one end to the other. The situation is analogous to a flow of water from a higher reservoir to a lower one. Water will flow in a pipe that connects the reservoirs only as long as a difference in water level exists. Like the flow of water molecules in a pipe, electric current also is simply the flow of electric charges in a conducting wire. These charges are free electrons that would only flow in conducting wires, usually made of metals, connected to a voltage source. When there is flow of electric charges, an electric current is present.

Electric current (I) is the rate of flow of electric charges from one point to another in a circuit. It is measured in Amperes (A). One ampere is a rate of flow equal to 1 coulomb of charge per second. Mathematically, electrical current is given by

$$
\begin{aligned}
\mathrm{I} & =\frac{q}{t} \\
\text { where: } \quad \mathrm{I} & =\text { current in Amperes (A) } \\
\mathrm{q} & =\text { charge in coulombs }(\mathrm{C}) \\
\mathrm{t} & =\text { time in seconds }(\mathrm{s})
\end{aligned}
$$

The standard unit of charge is coulomb. One coulomb is the electric charge of 6.25 billion electrons. So, if a wire carries 5 amperes, 5 coulombs of charges flow through the wire each second. This means that there are 31.25 billion electrons flowing from one point of a circuit to another. That is a lot of electrons! How much more if a wire carries 10 amperes, twice as many electrons would pass at any crosssection each second.

A sustained current in conducting wire requires a suitable pumping device; meaning, charges will flow only when they are pushed or driven. The work needed
per unit charge to move between two points is called voltage (V), expressed in unit volt (V).

Voltage (\mathbf{V}) is what makes a current move. Mathematically voltage is given by,

$$
\begin{aligned}
\mathrm{V} & =\frac{w}{q} \\
\text { where: } \quad \mathrm{V} & =\text { voltage in volts }(\mathrm{V}) \\
\mathrm{W} & =\text { work in Joule }(\mathrm{J}) \\
\mathrm{q} & =\text { charge in coulomb }(\mathrm{C})
\end{aligned}
$$

A common automobile battery, as shown in figure 1, will provide a voltage of 12 volts to a circuit connected across its terminals. Then 12 joules of energy are supplied to each coulomb of charge that is made to flow in the circuit. Remember, voltage does not go anywhere, it only drives the charges to move. Figure 2 shows the equivalent electrical symbol of 12 -volt automobile battery. You notice that it has 6 pairs of short and long lines that represent negative and positive terminals respectively. Each pair corresponds 2 volts.

Fig. 112 V automobile battery

Fig. 2 Electrical symbol of a 12 V battery

We know that batteries and generators are the primary sources of voltage in an electric circuit. How much current exists in a circuit depends not only on the voltage but also on the electrical resistance of the conductor.

Electrical resistance (\mathbf{R}) is the opposition to the flow of current by the conducting wire. The electrical resistance of the wire depends on its thickness, length, and conductivity. Thick wires have less resistance than thin wires because thick wires have greater cross-sectional area for the electron to flow than thin wires. Moreover, longer wires have more resistance than shorter wires because longer wires have longer path for the current to flow. Copper wires have less resistance than steel wires of the same size because copper has higher conductivity than steel. Conductivity is the property of matter that allows current to flow. The higher the conductivity of material the more current can freely flow. Electrical resistance also depends on temperature. At higher temperature, atoms are violently vibrating that can result to greater collision, creating more resistance against the flow of current. Electrical resistance is measured in ohms (Ω), named after Georg Simon Ohm.

An electronic device that is designed to resist the flow of current is known as a resistor, shown in figure 3 with its equivalent electrical symbol in figure 4.

Fig. 3 Resistor

Fig. 4 Electrical symbol of Resistor
Illustrated by: Angelo Zaldy C. Francia
A resistor can also be a light bulb, as shown in figure 5 with its equivalent electrical symbol in figure 6 , that will convert the energy that was moving the electrons into heat and light.

Fig. 5 Light Bulb

Fig. 6 Electrical symbol of light bulb

What's New

The relationship among voltage, current, and resistance is summarized by Ohm's law. Ohm discovered that at constant resistance, current in a circuit is directly proportional to the voltage established across the circuit as graphically represented in figure 7.

Fig. 7. Graphical Representation of Ohm's Law.

For given values of resistance, current and voltage in figure 8, current will double if voltage is doubled at constant resistance as shown in figure 9 . This means that the greater the voltage, the greater the current. If the resistance of a circuit is doubled, the current would be reduced to one-half when voltage is held constant. This means that the greater the resistance, the smaller the current (figure 10).

Fig. 8. Initial values of voltage, current, and resistance.

Fig. 9. Increasing current and voltage at constant. resistance.

Fig. 10. Inverse relationship of resistance and current at constant voltage.

What is It

Ohm's Law

In a simple circuit, voltage is directly proportional to current. Its proportionality constant is $\mathrm{R}=$ Resistance.

$$
\mathbf{V}=\mathbf{I} \mathbf{R}
$$

Where: $\quad \mathrm{V}=$ voltage expressed in volt (V)
I = Current expressed in Ampere (A)
$\mathrm{R}=$ Resistance expressed in ohm (Ω)

Example 1

Find the resistance in $\mathrm{k} \Omega$ of a single motor horn if it has a voltage of 6 V and current of 2 mA .

Given: \quad Voltage (V) $=6 \mathrm{~V}$;
Current (I) $=2 \mathrm{mAx}(1 \mathrm{~A} / 1000 \mathrm{~mA})=0.002 \mathrm{~A}$
Required: Resistance (R)
Solution: Ohm's Law: V = I R

$$
\begin{aligned}
\mathrm{R} & =\frac{V}{I} \\
& =6 \mathrm{~V} / 0.002 \\
& =3000 \Omega \mathrm{X}(1 \mathrm{k} \Omega / 1000 \Omega) \\
& =3 \mathrm{k} \Omega
\end{aligned}
$$

Example 2

If a circuit has a resistance of 44Ω and a current of 5 A , what is its voltage?
Given: Resistance $(\mathrm{R})=44 \Omega$

$$
\text { Current }(\mathrm{I})=5 \mathrm{~A}
$$

Required: Voltage (V)

$$
\text { Solution: Ohm's Law } \begin{aligned}
\mathrm{V} & =\mathrm{I} \mathrm{R} \\
\mathrm{~V} & =44 \Omega \times 5 \\
& =220 \mathrm{~V}
\end{aligned}
$$

Example 3

What will happen to the current if the resistance is tripled? State the relationship of current and resistance based on your answer.

$$
\begin{aligned}
\mathrm{V} & =\mathrm{I} \mathrm{R} \\
\text { So originally } I & =\frac{V}{R}
\end{aligned}
$$

$$
\text { If } \mathrm{R} \text { is tripled then, } I=\frac{V}{3 R}=\frac{1}{3} \frac{V}{R}
$$

Therefore, when resistance is tripled, the current is reduced by one third. The result shows that when resistance is increased at constant voltage, the current is reduced.

Activity 1. Voltage, Current and Resistance Relationship

Directions: Provide what is asked. Write your answers on a separate sheet of paper.

1. What will happen to the current if the voltage is decreased by one half while the resistance is held constant? State the relationship of voltage and current based on your answer.
2. What will happen to the current if resistance is doubled while voltage is kept constant? State the relationship of current and resistance based on your answer.

Rubric for Scoring	
2 points	Relationship is completely explained using Ohm's Law.
1 point	Incomplete explanation of relationship using Ohm's Law.

What's More

Activity 2. Ohm's Law Application

Directions: Complete the solutions of the problems. Write your answers on a separate sheet of paper.

1. A multi-cab starter motor has a current of 60.0 A and a voltage of 12 V . What is the resistance of the starter motor?

Given: Current (I) =__A
Voltage (V) =__V
Required: Resistance (Ω)
Formula: $\quad \mathrm{R}=\frac{\text { voltage }}{\text { curent }}=\square$
Solution: $\quad V=I R$
Answer: \quad Resistance $=$ \qquad Ω, the resistance of the electric motor.
2. An electric fan has a resistance of $3.0 \mathrm{k} \Omega$ and a voltage rating of 220 volts. What is the current needed to operate the electric fan?

Given: | | Resistance $(\mathrm{R})=\ldots$ |
| ---: | :--- |
| | $\mathrm{k} \Omega \times(1000 \Omega / 1 \mathrm{k} \Omega)=\ldots$ |
| | Voltage $(\mathrm{V}) \quad=\quad$ volts |

Required: Current (I)
Formula

$$
\mathrm{I}=\frac{\text { voltage }}{\text { resistance }}=
$$

\qquad
Solution: $\quad \mathrm{V}=\mathrm{IR}$
Answer: \quad Current $=\ldots$ A, the current needed to operate the electric fan
3. A traffic light has a total resistance of $22 \mathrm{k} \Omega$ and requires 10 mA of current to operate. What is the voltage required to operate the traffic light?

Given: Resistance (R) = \qquad $\mathrm{k} \Omega \times(1000 \Omega / 1 \mathrm{k} \Omega)=$ \qquad Ω

Current (I) = \qquad $\mathrm{mA} \times(1 \mathrm{~A} / 1000 \mathrm{~mA})=$ \qquad A

Required: Voltage(V)
Solution: $\quad V=I R$

$$
\mathrm{V}=(\ldots \quad \mathrm{A})(\ldots \quad \Omega)
$$

Answer: \quad Voltage $=$ \qquad volts

What I Have Learned

Provide what is asked. Write your answers on a separate sheet of paper.

1. State the relationship of current, voltage, and resistance.

Rubric for Scoring	
2 points	The relationship is completely stated.
1 point	The relationship is partially stated.
0	No answer.

2. What is the product of resistance and current in Ohm's Law? \qquad
3. In Ohm's Law, what is the electrical quantity if the voltage is divided by its current? \qquad
4. In Ohm's Law, what is the electrical quantity if the voltage is divided by its resistance? \qquad

What I Can Do

Activity 3. Ohm's Law at Home

Read and understand the situation below. Write your answers on a separate sheet of paper.

In the Philippines, an electric energy distributor supplies each household 220 volts of voltage and 60 A of current. Applying your knowledge on Ohm's Law, in what way your appliances be used at home to maintain a safe amount of current?

Rubric for Scoring	
2 points	The answer is consistent with the concept of Ohm's Law.
1 point	The answer is not consistent with concept of Ohm's Law.
0	No answer.

Assessment

Choose the letter of the correct answer. Write your answers on a separate sheet of paper.

1. What is the electric current if a circuit has a resistance of 100Ω and voltage of 12.0 V ?
A. 0.120 A
B. 9.00 A
C. 12.0 A
D. 25.0 A
2. What is the electric current if a circuit has a resistance of 100Ω and a voltage of 6.00 V ?
A. 0.0600 A
B. 4.50 A
C. $\quad 6.00 \mathrm{~A}$
D. 12.5 A
3. What is the voltage of a circuit that has a resistance of $6 \mathrm{k} \Omega$ and a current of 2 mA ?
A. 9 V
B. 10 V
C. 11 V
D. 12 V
4. What will happen to the current if the voltage is reduced to one half?
A. tripled
B. doubled
C. decreased by one half
D. decreased by one fourth
5. Calculate the voltage if the current passing through the wire is 3 A , and has a resistance of 10Ω.
A. 6 V
B. 30 V
C. 75 V
D. 150 V
6. What is the voltage across a 6Ω load when 3 A of current passes through it?
A. 2 V
B. 9 V
C. 18 V
D. 36 V
7. Which of the following properties of materials does NOT affect resistance?
A. length
B. thickness
C. temperature
D. strength of the material
8. Ampere is a unit of what electrical quantity?
A. current
B. load
C. resistance
D. voltage
9. What happens to the current across a circuit when the voltage is doubled while the resistance is held constant?
A. tripled
B. halved
C. doubled
D. remains the same
10. Which of the following statements is correct about the relationship of voltage and current?
A. Current varies directly with voltage and resistance is changing.
B. Current varies indirectly with voltage and resistance is changing.
C. Current varies directly with voltage when resistance remains constant.
D. Current varies indirectly with voltage when resistance remains constant.
11. What type of conducting wire has the greatest resistance to the flow of current?
A. thin, long wire
B. thick, long wire
C. thin, short wire
D. thick, short wire
12. Which of the following conducting wires has the least resistance?
A. Steel wire at room temperature
B. Steel wire at higher temperature
C. Copper wire at room temperature
D. Copper wire at higher temperature
13. How many coulombs does a 3-A current have in one second?
A. 3 C
B. 4 C
C. 5 C
D. 6 C
14. How many billions of electrons are there in a 3.000-A current?
A. 6.250
B. 12.50
C. 18.75
D. 25.00
15. What is the amount of current when 60 coulombs of charges pass through a circuit in 10 seconds?
A. 3 A
B. 4 A
C. 5 A
D. 6 A

Additional Activities

Activity 4. Graphing Current vs Voltage

Calculate the current and complete the table below. Using the values of voltage and current on the table, plot the V versus I graph. Write your answers on a separate sheet of paper.

Voltage (V)	Current (mA)	Resistance $\mathrm{k} \Omega$
0.0		1.0
1.0		1.0
2.0		1.0
3.0		1.0
4.0		1.0
5.0		1.0
6.0		1.0
7.0		1.0
8.0		1.0
9.0		1.0

Notes to the Teacher
Provide extra copies of this activity for students' use.

Answer Key

\begin{tabular}{|c|c|}
\hline \& pueisisə иәчм＇әо하힌

\hline \& $$
\begin{aligned}
& y z / \Lambda=1 \\
& (y z) I=\Lambda
\end{aligned}
$$

\hline $\checkmark^{*} \varepsilon \underline{1}$ \& uetsuoo s！\wedge

\hline $\mathrm{V}^{\circ} \mathrm{ZI}$ \& पд＝y ：иә૫М

\hline －it \& $\underline{y l}=\Lambda \quad$＇${ }^{\text {l }}$

\hline $\mathrm{V}^{\circ} \mathrm{OI}$ \&

\hline V 6 \&

\hline $2 \cdot 8$ \&

\hline $\bigcirc{ }^{\circ}$ \& y $y / \Lambda=1$

\hline ¢ 9 \& पI $=$／$/ \Lambda$

\hline \bigcirc ¢ \& e7suoo s！y

\hline \& 乙／$\Lambda=\Lambda$ ： иәч $^{\text {a }}$

\hline \forall

\sim \& $$
\mathrm{yI}=\Lambda
$$

\hline ¢ I \& I Kı！n！̣ov

\hline \multirow[t]{2}{*}{mouя I \＃nym} \&

\hline \& 7I S？7DYM

\hline
\end{tabular}

$$
\begin{aligned}
& \mathrm{y} \mathrm{I}=\Lambda \quad \text { :uoḷnfos }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{y} \mathrm{I} \mathrm{=} \Lambda \quad \text { :uo!̣nios }
\end{aligned}
$$

$$
\forall \overline{0 ` 09}=\text { ұนәェınง }
$$

'sұчв̊!
:̇әмsuy
$\mathrm{s} \ddagger \mathrm{o} \frac{1}{\mathrm{O}} \overline{\mathrm{OZZ}}=\Lambda$
$(\mho \overline{000 Z Z})(\mathrm{V} \overline{\mathrm{LO} \cdot 0})=\Lambda$

$$
\text { y I = } \Lambda \quad \text { :uounnios }
$$

モ $\mathbf{K} \mathbf{K}$

$$
\text { 2.LOK } \mathrm{s}_{6} 70 Y \mathrm{M}
$$

> рวu.IDวT วดDH I ҰDЧМ

References

Gil Nonato S. Santos, Alfonso D. Danac. 2010. "Resistance in Electric Circuits." In O-Physics IV, by Gil Nonato S. Santos, Alfonso D. Danac, 208. Manila, Philippines: Rex Book Store.

Paul G. Hewitt. 2006. "Electric Current". In Conceptual Physics, by Paul G. Hewitt, 437. San Francisco, California: Pearson Addison-Wesly.

Hugh D. Young, Roger E Freedman, Lewis A. Ford. 2008. "Ohm's Law." In University Physics, by Roger E Freedman, Lewis A. Ford Hugh D. Young, 855. San Francisco, California: Pearson Addison-Wesley.

Pixabay. "Car Battery Lead Storage-Free Vector Graphic on Pixabay." Accessed May 19, 2020. https://pixabay.com/vectors/car-battery-battery-296788/

Pixabay. " Electronic Element-Free Vector Graphic on Pixabay." Accessed May 20, 2020. https://pixabay.com/vectors/electronics-element-resistor-2026597/

Pixabay. "Light Switch Plate Electric -Free Vector Graphic on Pixabay." Accessed May 21, 2020. https://pixabay.com/vectors/light-switch-switch-plate37017/

Pixabay. "Bulb Light Lamp-Free Vector Graphic on Pixabay." Accessed May 22, 2020. https://pixabay.com/vectors/bulb-light-lamp-electric-160207/

Paul G. Hewitt. 2006. "Electric Current ." The Physics Place Circuit. In Conceptual Physics. Accessed May 9, 2020.
http://schools.misd.org/upload/page/1757/ELECTRIC\ CURRENT.pdf
Ck-12. "Ohm's Law Ck-12 Foundation."Accessed May 26, 2020.
https://flexbooks.ck12.org/cbook/ck-12-physics-flexbook-2.0/section/16.5/primary/lesson/resistance-and-ohms-law-phys

For inquiries or feedback, please write or call:

Department of Education - Bureau of Learning Resources (DepEd-BLR)
Ground Floor, Bonifacio Bldg., DepEd Complex
Meralco Avenue, Pasig City, Philippines 1600
Telefax: (632) 8634-1072; 8634-1054; 8631-4985
Email Address: blr.Irqad@deped.gov.ph * blr.Irpd@deped.gov.ph

